Checklist of Topics for Test \# 2
 Calculus I
 Fall, 2013

- Limits involving infinity $---\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$ and $\lim _{x \rightarrow \pm \infty} f(x)=L$.
- Know how to compute them
- Know how to interpret them. (E.g. if you know that $\lim _{x \rightarrow 2^{-}} f(x)=+\infty$, what does this tell you about the behavior of f ? You should be able to give both a graphical and a numerical interpretation.)
- Antiderivatives, Differential Equations (DiffEq's, DE's), Initial Value Problems (IVP's)
- You need to be able to compute basic antiderivatives.
- Know what it means to say that something is a solution to a DE or to an IVP and how to verify whether it is so in a particular case.
- Given an initial value, know how to find a particular solution to a DiffEq from the general solution.
- There is a small collection of DE's we know how to solve:
- $\quad y^{\prime}=f(t)$ where f is easy to antidifferentiate.
- $y^{\prime}=k y$ where k is constant
- $y^{\prime}=k y+b$ where k and b are both constants

You should be able to find the general solution to a DE of this form, or an IVP based on one.

- Modeling using differential equations, as in the assignment "Solving Some Special Initial Value Problems" and the Investments/loans project.
- Derivatives of elementary functions---polynomials, rational functions, trig and inverse trig functions, exponential functions, logarithms.
- Using the product rule, Quotient rule, chain rule, you should be able to find the derivative of a function:
- Given a formula
- From data about the function(s) and derivative(s) at specified points
- From graphs and/or a graph combined with a formula(s).
- Derivatives and local extrema---you should be able to find and classify local extrema.
- Global maxes and mins:
- You should be able to determine whether a given function has global max/min and explain how you know. (In restricted circumstances:
- The Extreme Value Theorem---know when it applies and be able to use it!
- The case when EVT doesn't hold, but there is a unique critical point.
- When a function has a global max or a global min, you should be able to find it and be able to explain why it is what you claim it is.
- Context: applied max/min problems--- "bigger/smaller" handout.
- Newton's method
- Know how to set up the recursion relation for a function, make a reasonable guess at a root, and be able to compute several "updated" guesses directly showing your reasoning at each step. You may, of course, use Maple or a calculator to do the arithmetic for you.
- Know how to set up Newton's method to find a root, make a reasonable first guess, and be able to use the Maple program to implement the method to get an answer good to a specified number of decimal places.
And be able to succinctly articulate how you do all of these things, so that you may annotate a solution rather than just having some mysterious answer show up on your test paper.

